

WATER QUALITY REPORT

2024

UNDERSTANDING THIS REPORT

Every year, Dutchess County Water and Wastewater Authority (DCWWA) publishes a report on the quality of Dalton Farms' drinking water. This isn't just a state and federal requirement—it's also an opportunity to help our customers understand where their water comes from, what's in it, and how we work to keep it safe and reliable.

We're happy to let you know that in 2024, your drinking water met all State health and safety standards, with no violations of any water quality limits.

If you have any questions about this report or the information it contains, please don't hesitate to reach out using the contact information below. We encourage you to be part of the conversation about your water system.

WHO WE ARE

DCWWA is an independent, not-for-profit public benefit corporation that was established in 1991 by an act of the State at the request of Dutchess County. Authority actions are governed by an appointed Board of Directors.

As owner and operator of 18 drinking water systems that collectively serve over 22,000 people, DCWWA is committed to the providing reliable drinking water with quality customer service at a reasonable cost, proportionate to the cost of proper operation and environmental stewardship.

OUR MISSION

To protect and enhance the health, environmental sustainability and economic stability of Dutchess County and its residents through the provision of clean drinking water and proper treatment of wastewater.

CONTACT US

Call our office Monday-Friday, 9:00 a.m. to 4:00 p.m. at

(845) 486-3601

Email us anytime at

Visit our website to sign up for system-specific Alerts and Advisories

http://www.dcwwa.org/

Attend one of our monthly Board Meetings virtually, or in person at our office located at

1 Lagrange Ave, Poughkeepsie, NY

CELEBRATING EXCELLENCE IN WATER MANAGEMENT

We are thrilled to announce that DCWWA Operator Cody Nelson, the Lead Operator of your water system, has been honored with the prestigious Operator of the Year award from the New York section of the American Water Works Association. This recognition highlights his exceptional expertise and commitment to maintaining the highest standards of water service for your community.

DRINKING WATER FACTS

FROM THE U.S. EPA AND THE NEW YORK STATE DEPARTMENT OF HEALTH

How water sources can contain contaminants

Drinking water (both tap water and bottled water) comes from natural sources, including rivers, lakes, streams, ponds, reservoirs, springs and wells.

As water travels over the surface of the land and through the ground, it dissolves naturally occurring minerals. Substances resulting from the presence of animal or human activity—even radioactive material—can also be picked up along the way.

Potential contaminants in New York water sources

All drinking water, including bottled water, may reasonably be expected to contain at least some small amount of contamination. This does not necessarily indicate that the water poses a health risk.

In the Hudson Valley's groundwater supplies, potential sources of contamination include:

- Microbial contaminants, such as viruses, bacteria, and protozoa
- Inorganic contaminants, including metals, salts, and radioactive materials that may occur naturally in rocks and soils or leach from manmade sources
- Organic contaminants, which often result from chlorine combining with naturally occurring organic matter

How safe water standards are set and enforced

To ensure tap water is safe to drink, the State and the EPA set regulations that limit the levels of certain contaminants in water provided by public water systems. Water providers are required to perform routine testing for regulated contaminants and report the results to the New York State Department of Health and water users. If a water system fails to meet drinking water standards or violates regulations, penalties can be imposed. These penalties might include fines, mandatory corrective actions, or, in extreme cases, legal action to shut down or restrict a water system. If something is wrong with your water, you will be notified.

More information about contaminants and their potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline at 1 (800) 426-4791 or the Dutchess County Department of Behavioral and Community Health at (845) 486-3404.

Important Information from the New York State Department of Health

The NYS DOH has completed a source water assessment for this system, based on available information. Possible and actual threats to this water source were evaluated. The State source water assessments include a susceptibility rating based on the risk posed by each potential source of contamination and how easily contaminants can move through the subsurface to the wells. Susceptibility rating is an estimate of the potential for contamination of the source water, it does not mean that the water delivered to consumers is or will be contaminated. See section "Are there contaminants in our drinking water?" for a list of the contaminants that have been detected, if any. The source water assessments provide resource managers with additional information for protecting source waters in the future. The source water assessment has rated our water source as having an elevated susceptibility to microbial, nitrate, salt, and sulfate contamination. These ratings are due primarily to the proximity of the wells to a landfill and a permitted discharge facility (industrial/commercial facilities that discharge wastewater into the environment and are regulated by the state and/or federal government) and the residential and agricultural land use and related activities in the assessment area. In addition, the wells draw from fractured bedrock and overlying soils may not provide adequate protection from potential contamination. The county and state health departments will use this information to direct future source water protection activities. The source water assessment summary for your system is available by calling the Dutchess County Department of Behavioral and Community Health at 845-486-3404 and requesting a copy.

HERE DOES OUR

The Dalton Farms Water System has been a cornerstone of your community since 2000. The system has been owned by DCWWA since 2004 and has been operated by DCWWA staff since 2022.

Dalton Farms' water source is **groundwater** drawn from **four wells** along Recreation Road. These wells tap into deep underground aquifers, providing a reliable and consistent water supply.

Before reaching your tap, the water goes through a multi-step treatment process to ensure quality and safety. First, it's <u>filtered</u> to remove naturally occurring sediments. Next, the water is <u>disinfected using sodium hypochlorite</u> to eliminate harmful microorganisms. After treatment, the water is pumped to a <u>185,000-gallon buried concrete tank</u>, where it is safely stored until needed.

From the storage tank, water flows to most of the system's homes and businesses by gravity. A **5,500-gallon hydropneumatic tank** provides a **pressure boost for higher-elevation areas**, helping ensure consistent service throughout the system.

Today, the system serves about 2,055 people through 603 customer connections. While that's smaller than the national average of 8,000 customers per system, it means we're able to focus on what matters most: **you**. Systems like Dalton Farms are built on a sense of community. We're not just providing water to customers; we're serving our neighbors. Every household is part of what makes this place unique, and we're proud to deliver the same **safe**, **high-quality water** and responsive service you'd expect from a much larger utility.

Are There Contaminants in Our Drinking Water?

We work hard to ensure your drinking water is safe, and that starts with testing. In 2024, as required by New York State regulations, our team tested your water for 49 different contaminants. Out of all those tests, only 18 contaminants were found at detectable levels, and **all were within safe limits**.

Across the next few pages, you'll find details about what was detected, when it was found, how much was present, and how those levels compare to the State's health-based standards. Keep in mind, the State allows some contaminants to be tested less frequently because they typically remain stable over time, so while a few results may be from earlier years, they still provide an accurate picture of your water quality.

Want to know more about what's in your water and what it means? Keep reading—we've got you covered.

TABLE OF DETECTED CONTAMINANTS

DALTON FARMS WATER SYSTEM

Public Water System ID NY1330010

DISINFECTION BYPRODUCTS

Contaminant: HALOACETIC ACIDS (HAA5)								
Why we test for it: Some people who drink water containing haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer.								
Sources in drinking water: By-product of drinking water disinfection needed to kill harmful organisms.								
Sample Location	Sample Date(s)	Level Detected (Range)	Regulatory Limit (MCL/MRDL)	MCLG	Unit	Meets State Standards?		
System Wide	8/7/2024	1.20	60	N/A	ug/L	V		

Contaminant: TOTAL TRIHALOMETHANES (TTHM) Why we test for it: Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous systems, and may have an increased risk of getting cancer. Sources in drinking water: By-product of drinking water chlorination needed to kill harmful organisms. TTHMs are formed when source water contains organic matter. Sample Location Sample Date(s) Level Detected (Papera) (MCL/MRDL) MCLG Unit Meets State Standards?

Sample Location	Sample Date(s)	Level Detected (Range)	(MCL/MRDL)	MCLG	Unit	Meets State Standards?
System Wide	8/7/2024	4.70	80	N/A	ug/L	✓

INORGANIC CONTAMINANTS

Sample Location	Sample Date(s)	Level Detected	Regulatory Limit (MCL/MRDL)	MCLG	Unit	Meets State Standards?
Entry Point	4/22/2021	(Range) 0.01	2	2	mg/L	✓
Why we test f	nant: BERYLLIUM for it: Some people who dring intestinal lesions. ater: Discharge from metal industries.					
Sample Location	Sample Date(s)	Level Detected (Range)	Regulatory Limit (MCL/MRDL)	MCLG	Unit	Meets State Standards?
	10/2/2024	1.94	4	4	ug/L	✓

Sources in drinking water: Corrosion of household plumbing systems; Erosion of natural deposits; leaching from wood preservatives.

Sample Location	Sample Date(s)	Level Detected (Range)	Regulatory Limit (MCL/MRDL)	MCLG	Unit	Meets State Standards?
System Wide	8/7/2024 through 9/25/2024	0.14	Action Level = 1.3	1.3	mg/L	~

Heavy Metal, Light Risk: Lead and Copper in Your Water

To monitor for lead and copper in drinking water, samples are collected from homes across the distribution system identified by DCWWA and the Department of Health as most likely to have plumbing that could contribute to metal levels, usually older homes with legacy piping. In this round, ten samples were collected from across the system. These results are used to calculate the 90th percentile value (presented above), which isn't an average—it's the value that's higher than 90% of the samples. This helps to highlight areas where concentrations may be closer to the action level, which is important for identifying and addressing potential problems. Lead and copper can enter drinking water through corrosion of plumbing materials, especially in homes with lead pipes or copper pipes joined with lead-based solder. However, it's important to note that the use of lead in drinking water plumbing was banned in 1986, 14 years before the Dalton Farms Water System came into service. This significantly reduces the likelihood of lead contamination in this system. For the most recent testing, all lead and copper results, including 90th percentile values, were well below the action levels set by the EPA.

<u>Contaminan</u>	t: LEAD							
	abilities. Adults who dri	development. Children nk this water over many	could show slight deficit years could develop kid	s in attention	span and lea	arning		
Sources in drinking water	<u>:</u> Corrosion of household	plumbing systems; Eros	sion of natural deposits.					
Sample Location	Sample Date(s)	Level Detected (Range)	Regulatory Limit (MCL/MRDL)	MCLG	Unit	Meets State Standards?		
System Wide	8/7/2024 through 9/25/2024	2.26 ND - 4.50	Action Level = 15	0	ug/L	✓		
Why we test for it	t: NICKEL t: Contact with high concessors such as allergy, cardiovation. T: Naturally occurring, byp.	ascular and kidney disea	ses, lung fibrosis, lung a			aan health,		
Sample Location	Sample Date(s)	Level Detected (Range)	Regulatory Limit (MCL/MRDL)	MCLG	Unit	Meets State Standards?		
Entry Point	4/22/2021	0.00	N/A	N/A	ug/L	✓		
Contaminant: NITRATE (AS N) Why we test for it: Infants below the age of six months who drink water containing nitrate in excess of the MCL could become seriously ill and, if untreated, may die. Symptoms include shortness of breath and blue-baby syndrome.								
Sources in drinking water	ː Runoff from fertilizer us	e; Leaching from septic	tanks, sewage; Erosion c	of natural depo	osits.			

Sample Location	Sample Date(s)	Level Detected (Range)	Regulatory Limit (MCL/MRDL)	MCLG	Unit	Meets State Standards?
Entry Point	5/1/2024	1.60	10	10	mg/L	✓

Contaminant: **SELENIUM**

Why we test for it: Selenium is an essential nutrient. However, some people who drink water containing selenium in excess of the MCL over many years could experience hair or fingernail losses, numbness in fingers or toes, or problems with their circulation.

Sources in drinking water: Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines.

Sample Location	Sample Date(s)	Level Detected (Range)	Regulatory Limit (MCL/MRDL)	MCLG	Unit	Meets State Standards?
Entry Point	10/2/2024	1.74	50	50	ug/L	✓

MICROBIOLOGICAL CONTAMINANTS

Contaminant: ESCHERICHIA COLI (E. COLI)

Why we test for it: E. coli are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Microbes in these wastes can cause short-term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms. They may pose a special health risk for infants, young children, and people with severely compromised immune systems.

Sources in drinking water: Human and animal fecal waste.

Sample Location	Sample Date(s)	Level Detected (Range)	Regulatory Limit (MCL/MRDL)	MCLG	Unit	Meets State Standards?
Well 5A	11/7/2024	1 positive sample	0	0	N/A	✓

Contaminant: TOTAL COLIFORM

Why we test for it: Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms indicating the need to look for potential problems in water treatment or distribution.

Sources in drinking water: Naturally present in the environment.

Sample Location	Sample Date(s)	Level Detected (Range)	Regulatory Limit (MCL/MRDL)	MCLG	Unit	Meets State Standards?
Well 5A	11/7/2024	1 positive sample	TT = 2 or more positive samples after April 1, 2016	0	N/A	✓
System Wide	1/18/2024 through 12/5/2024	1 positive sample	TT = 2 or more positive samples after April 1, 2016	0	N/A	✓

E. Coli Under the Microscope: Treated, Tested, and Safe

Every month, DCWWA tests water from three different locations across the distribution system for coliform bacteria, which are naturally found throughout the environment in soil, plants, and the digestive systems of animals (including humans). While these bacteria are often harmless, their presence an important warning sign that harmful pathogens like E. coli may also be present. This simple test helps us regularly monitor different parts of the water system for potential contamination. When a positive total coliform result came in on November 7, 2024, our team took action right away. Operators immediately conducted follow-up testing at the original sample site and two nearby properties, as well as all of the source wells. While all treated water samples came back clean, untreated water from Well 5A tested positive for E. coli. This well contributes to supply but, like all sources, it undergoes treatment before the water is delivered to customers. The system is equipped with 4-log disinfection, a high-level treatment process that inactivates 99.99% of viruses and bacteria. Thanks to this robust treatment and consistent monitoring, Dalton Farms has no history of E. coli in the distribution system, and your drinking water remains safe.

RADIOACTIVE CONTAMINANTS

Contaminant: BETA PARTICLE AND PHOTO RADIOACTIVITY FROM MANMADE RADIONUCLEOTIDES

Why we test for it: Certain materials are radioactive and may emit forms of radiation known as photons and beta radiation. Some people who drink water containing beta and photon emitters in excess of the MCL over many years may have an increased risk of getting cancer.

Sources in drinking water: Decay of natural deposits and man-made emissions.

Sample Location	Sample Date(s)	Level Detected (Range)	Regulatory Limit (MCL/MRDL)	MCLG	Unit	Meets State Standards?
Entry Point	5/27/2022	1.44	50	0	pCi/L	✓

Contaminant: **URANIUM**

Why we test for it: Some people who drink water containing uranium in excess of the MCL over many years may have an increased risk of getting cancer.

Sources in drinking water: Erosion of natural deposits.

Sample Location	Sample Date(s)	Level Detected (Range)	Regulatory Limit (MCL/MRDL)	MCLG	Unit	Meets State Standards?
Entry Point	5/27/2022	2.44	30	0	ug/L	✓

SYNTHETIC ORGANIC CONTAMINANTS

<u>Contaminant:</u> **PERFLUORO-OCTANESULFONIC ACID (PFOS)**Why we test for it: PFOS caused a range of health effects when studied in animals at high exposure levels. The most consistent

first: PFOS caused a range of health effects when studied in animals at high exposure levels. The most consistent findings were effects on the liver and immune system and impaired fetal growth and development. Studies of high-level exposures to PFOS in people provide evidence that some of the health effects seen in animals may also occur in humans. The United States Environmental Protection Agency considers PFOS as having suggestive evidence for causing cancer based on studies of lifetime exposure to high levels of PFOA in animals.

Sources in drinking water: Released into the environment from widespread use in commercial and industrial applications.

Sample Location	Sample Date(s)	Level Detected (Range)	Regulatory Limit (MCL/MRDL)	MCLG	Unit	Meets State Standards?
Well 5A	2/22/2024 through 12/20/2024	3.14 1.85 - 4.78	10	N/A	ng/L	V

Contaminant:	D	FR	F	П	0	R	C)_(O	C	ΓΔ	N	\mathbf{O}	C	Δ	CI	Б	P	E(n.	Δ	١
Contaminant:		LD		LU	U	$\Lambda \mathbf{N}$	C		U	<u> </u>	Z.	IV.	V.		А	Ų.	Ľ	U			7	J

Why we test for it: PFOA caused a range of health effects when studied in animals at high exposure levels. The most consistent findings were effects on the liver and immune system and impaired fetal growth and development. Studies of high-level exposures to PFOA in people provide evidence that some of the health effects seen in animals may also occur in humans. The United States Environmental Protection Agency considers PFOA as having suggestive evidence for causing cancer based on studies of lifetime exposure to high levels of PFOA in animals.

Sources in drinking water: Released into the environment from widespread use in commercial and industrial applications.

Sample Location	Sample Date(s)	Level Detected (Range)	Regulatory Limit (MCL/MRDL)	MCLG	Unit	Meets State Standards?		
Well 5A	2/22/2024 through 12/20/2024	2.64 1.72 - 3.76	10	N/A	ng/L	✓		

UNREGULATED PERFLUOROALKYL SUBSTANCES

	nant: PERFLUORO-E for it: Research is ongoing to				oroallad com	nounds		
	vater: Released into the envir			•		pourius.		
Sample Location	Sample Date(s)	Level Detected (Range)	Regulatory Limit (MCL/MRDL)	MCLG	Unit	Meets State Standards?		
Well 5A	2/22/2024 through 12/20/2024	9.33 2.04 - 21.4	N/A	2000	ng/L	V		
Contaminant: PERFLUOROBUTANOIC ACID (PFBA) Why we test for it: Research is ongoing to understand the potential health effects of unregulated perfluoroalkyl compounds. Sources in drinking water: Released into the environment from widespread use in commercial and industrial applications.								
Sample Location	Sample Date(s)	Level Detected (Range)	Regulatory Limit (MCL/MRDL)	MCLG	Unit	Meets State Standards?		
Well 5A	12/20/2024	4.25	N/A	N/A	ng/L	✓		

Focus on PFAS: Understanding Emerging Contaminants and What They Mean for Your Water

PFAS (Per- and Polyfluoroalkyl Substances) are human-made chemicals commonly used in commercial products for their water- and stain-resistant properties. They are known to persist in both the environment and the human body over time, earning them the nickname "forever chemicals." PFAS contamination is an emerging issue throughout the Hudson Valley and across the nation. At Dalton Farms, PFAS have been detected in one of the system's four wells—Well 5A—which provided approximately 26% of the community's water in 2024. Importantly, all detected levels are within the safe limits set by New York State. The other three wells have never shown any PFAS detections. As part of our ongoing commitment to delivering safe, high-quality drinking water, we regularly monitor all wells and are actively exploring ways to further reduce PFAS levels across the system.

	nt: PERFLUOROH					
Why we test for	it: Research is ongoing to	understand the potentia	ا health effects of unreر	gulated perfluc	oroalkyl com	pounds.
Sources in drinking wate	er: Released into the enviro	onment from widespread	d use in commercial and	d industrial app	olications.	
Sample Location	Sample Date(s)	Level Detected (Range)	Regulatory Limit (MCL/MRDL)	MCLG	Unit	Meets State Standards?
Well 5A	2/22/2024 through 12/20/2024	0.91 ND - 1.42	N/A	N/A	ng/L	~
<u>Contaminar</u>	nt: PERFLUOROH	EXANESULFON	IIC ACID (PFH)	KS)		
Why we test for	it: Research is ongoing to	understand the potentia	l health effects of unreg	gulated perfluc	oroalkyl com	pounds.
Sources in drinking wate	er: Released into the enviro	onment from widespread	d use in commercial and	d industrial app	olications.	
Sample Location	Sample Date(s)	Level Detected (Range)	Regulatory Limit (MCL/MRDL)	MCLG	Unit	Meets State Standards?
Well 5A	2/22/2024 through 12/20/2024	0.39 ND - 0.841	N/A	N/A	ng/L	✓
<u>Contaminar</u>	nt. PERFLUORO-H	HEXANOIC ACII	D (PFHXA)			
Why we test for	it: Research is ongoing to	understand the potentia	l health effects of unreg	gulated perfluc	oroalkyl com	pounds.
Sources in drinking wate	er: Released into the enviro	onment from widespread	d use in commercial and	d industrial app	olications.	
Sample Location	Sample Date(s)	Level Detected (Range)	Regulatory Limit (MCL/MRDL)	MCLG	Unit	Meets State Standards?
Well 5A	2/22/2024 through 12/20/2024	2.21 1.29 - 2.88	N/A	N/A	ng/L	✓
<u>Contaminar</u>	nt PERFLUORON	ONANIC ACID	(PFNA)			
Why we test for	it: Research is ongoing to	understand the potentia	l health effects of unreg	gulated perfluc	oroalkyl com	pounds.
Sources in drinking wate	er: Released into the enviro	onment from widespread	d use in commercial and	d industrial app	olications.	
Sample Location	Sample Date(s)	Level Detected (Range)	Regulatory Limit (MCL/MRDL)	MCLG	Unit	Meets State Standards?
Well 5A	2/22/2024 through 12/20/2024	0.43 ND - 0.882	N/A	10	ng/L	✓
<u>Contaminar</u>	nt: PERFLUORO-P	PENTANOIC AC	ID (PFPEA)			
Why we test for	it: Research is ongoing to	understand the potentia	l health effects of unreg	gulated perfluc	oroalkyl com	pounds.
Sources in drinking water	er: Released into the enviro	onment from widespread	d use in commercial and	d industrial app	olications.	
Sample Location	Sample Date(s)	Level Detected (Range)	Regulatory Limit (MCL/MRDL)	MCLG	Unit	Meets State Standards?
Well 5A	12/20/2024	3.28	N/A	N/A	ng/L	✓

DEFINITIONS

Maximum Contaminant Level (MCL) The highest level of a contaminant that is allowed in drinking water. MCLs are set as

close to the MCLGs as feasible.

Maximum Contaminant Level Goal (MCLG) The level of a contaminant in drinking water below which there is no known or expected

risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL)

The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial

contaminants.

Action Level (AL)

The concentration of a contaminant which, if exceeded, triggers treatment or other

requirements which a water system must follow.

Treatment Technique (TT)

A required process intended to reduce the level of a contaminant in drinking water.

Non-Detects (ND)

Laboratory analysis indicates that the constituent is not present.

Milligrams per liter (mg/L)

One part of liquid in one million parts of liquid (parts per million - ppm).

Micrograms per liter (ug/L)

One part of liquid in one billion parts of liquid (parts per billion - ppb).

Nanograms per liter (ng/L)

One part of liquid to one trillion parts of liquid (parts per trillion - ppt).

Picocuries per liter (pCi/L)

A measure of the radioactivity in water.

Millirems per year

(mrem/yr)

A measure of radiation absorbed by the body.

One milligram per liter equals about one drop of water in a 10-gallon fish tank.

1 ppb

One microgram per liter equals about one drop of water in a 13,000-gallon swimming pool.

WHAT DOES THIS

INFORMATION MEAN?

Through regular testing, we've learned that some contaminants are present in your water—as is common with most water systems. The good news is that every substance detected was well below the maximum contaminant levels (MCLs) set by the State. These MCLs are strict safety standards designed to protect public health, and our results show that your water continues to exceed those rigorous standards. We share this information to keep you informed and confident in the quality of your drinking water. As always, our team remains committed to providing water that's not just safe—but also clean, clear, and reliable.

Do I need to take special precautions?

Although the drinking water provided to the Dalton Farms community met or exceeded all health-based State and Federal standards, some people may be more vulnerable to disease causing microorganisms or pathogens in drinking water than the general population.

Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice from their health care provider about their drinking water.

EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium, Giardia and other microbial pathogens are available from the Safe Drinking Water Hotline (800-426-4791).

IS OUR WATER SYSTEM COMPLYING WITH OTHER RULES THAT GOVERN OPERATIONS?

Yes! During 2024, our system complied with applicable State drinking water operating, monitoring and reporting requirements.

Although testing has never revealed hazardous levels of lead in your drinking water, we are required to present the following

Important Information on Lead Contamination

from the United States Environmental Protection Agency

Lead can cause serious health effects in people of all ages, especially pregnant people, infants (both formula-fed and breastfed), and young children. Lead in drinking water is primarily from materials and parts used in service lines and in home plumbing. DCWWA is responsible for providing high quality drinking water and removing lead pipes, but we cannot control the variety of materials used in the plumbing in your home. Because lead levels may vary over time, lead exposure is possible even when your tap sampling results do not detect lead at one point in time. You can help protect yourself and your family by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Using a filter, certified by an American National Standards Institute accredited certifier to reduce lead, is effective in reducing lead exposures. Follow the instructions provided with the filter to ensure the filter is used properly. Use only cold water for drinking, cooking, and making baby formula. Boiling water does not remove lead from water. Before using tap water for drinking, cooking, or making baby formula, flush your pipes for several minutes. You can do this by running your tap, taking a shower, doing laundry or a load of dishes. If you have a lead service line or galvanized requiring replacement service line, you may need to flush your pipes for a longer period. If you are concerned about lead in your water and wish to have your water tested, contact our office. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at https://www.epa.gov/safewater/lead.

SCAN AND SEARCH

to quickly identify your service line material

INFORMATION ON LEAD SERVICE LINE INVENTORY

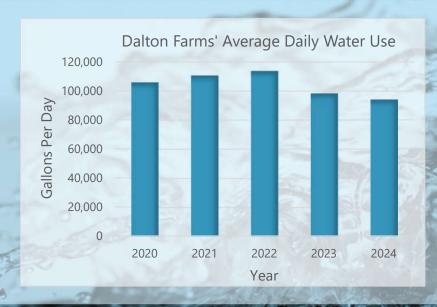
A Lead Service Line (LSL) is defined as any portion of pipe that is made of lead which connects the water main to the building inlet. An LSL may be owned by the water system, owned by the property owner, or both. The inventory includes both potable and non-potable SLs within a system. In accordance with the federal Lead and Copper Rule Revisions (LCRR) DCWWA has prepared a lead service line inventory, which you can access by contacting our office to request a copy or by clicking or scanning the QR code above to search for your address on the New York State DOH's LSLI interactive map.

We are partners in

WATER CONSERVATION

Saving Water Saves Money

Using less water reduces the cost of treatment chemicals and electricity used in pumping water to your home. It also reduces strain on equipment, which means we need to replace wells, pumps, storage tanks, and other vital system components less often.


Saving Water Keeps Your System Sustainable

Using less water reduces stress on the aquifer your well draws from, keeping your community prepared for drought conditions and reducing the impact of future shifts in aquifer recharge patterns due to climage change.

Saving Water May Help Improve Water Quality

As the volume of water in the aquifer decreases, certain contaminants may become more concentrated in groundwater, causing users to experience unpleasant taste, color, and odor more often.

Every Drop Counts

Since 2020, water use in the Dalton Farms system has decreased by about 2.5%. That may not sound like much, but it adds up to nearly 900,000 gallons each year! Even simple changes at home can add up to a lasting impact for the entire system.

If you have a home water softener or filtration system, now's a great time to check that it's running efficiently—these systems can use extra water when they need maintenance or adjustment.

No softener? No problem! Keep reading for easy, effective ways to keep the momentum going and conserve even more water at home.

Simple Tips for Everyday Water Conservation

Don't let leaks drain your wallet.
Even a small drip can waste 15 to
20 gallons a day, adding up to over
6,000 gallons a year! Take a few
minutes to check faucets, toilets,
and pipes—and fix any leaks as
soon as you spot them.

Toilet leaks can be sneaky! To check for one, add a few drops of food coloring to the toilet tank and wait 10 to 15 minutes. If color appears in the bowl without flushing, you've got a leak. It's an easy test that could save 30,000 gallons a year.

Water lawns and gardens early in the morning or late in the evening to reduce evaporation. Make the most of every drop by switching to drip irrigation for targeted watering and adding a thick layer of mulch around plants to lock in moisture.

IN-CLOSING

A Message from DCWWA's Executive Director

On behalf of the entire team at the Dutchess County Water and Wastewater Authority, I want to thank you for taking the time to review this Annual Water Quality Report. Our dedicated operations staff takes pride in the accurate and timely collection of thousands of water samples each year. The information in this report represents countless hours spent collecting, analyzing, and managing sample data. Presenting you with this annual synopisis of your water quality is a key part of our commitment to transparency, and we sincerely hope you find this report informative.

As the new Executive Director, a role I took on in October of 2024, I am honored to lead such a committed team of water professionals. I remain deeply focused on ensuring that our services meet the evolving needs of the people and communities we serve. As we face rising operational costs, we remain committed to controlling price increases and keeping rates as affordable as possible without compromising the quality of service you rely on.

I encourage you to reach out to our knowledgeable staff with any questions or concerns you may have about the water we provide. Your trust is important to us, and we are here to ensure that you have the data and confidence you need to make informed decisions for your family.

Thank you for your continued support. We look forward to serving you for years to come.

Sincerely,

Jonathan Churins

Executive Director
Dutchess County Water and Wastewater Authority